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ABSTRACT

Finite element method (FEM) is traditionally recognized by its versatility for handling
complicated geometries at a relative ease. This paper focuses on the development of a FEM
solver for the Compressible Fluid Dynamics problems using the Mixed Explicit Implicit (MEI)
method. The method utilizes object oriented program languages to create a unified environment
for pre-processor, the main solver, and post processor. With this approach, the user can obtain
the solution to the compressible Navier Stokes equations all in one environment, starting from
the very raw data all the way to post-processing and analysis of the results. The success of this
method is illustrated in several examples including compressible flow in laminar boundary layer
shock interactions, ramjet, scramjet, and SSME nozzles. First, the grid is automatically generated
upon selection of appropriate mesh parameters. On the same environment, the flow field
parameters can also be specified before the flow solver is executed. Upon solution convergence,
the results can be displayed on the same window. The procedure can be repeated until
satisfactory results are achieved.

INTRODUCTION

Most programs for CFD analysis usually consist of environment in which the user must generate
a separate input data that must be fed into the pre-processor. Then the results obtained by pre-
processor must be checked by a graphic package to ensure the integrity of the resulting grid.
Then CFD solver is run and a set of output data files are generated. The data files contains
information about the flow field properties such as density, pressure, velocity, energy,
temperature, etc. At the last stage, the results generated by the solver are viewed by a post
processor. The results range from grid, density, pressure, Mach number contours or the surface
properties such as skin-friction or pressure distribution. Then this process is repeated until a
satisfactory solution is obtained. This process however appears to be inefficient and there exists
a lot of “overhead” in the process that may be eliminated. The proposed development will
integrate the three environments into one unified environment. The preprocessor, solver and
post processor will be accessible simultaneously. This procedure will remove the overhead
needed for accessing the data form one step to another.

METHOD OF SOLUTION

A robust FEM program that will aid in analysis and design related to high speed aerodynamics
has been developed. The program will enable users to study and analyze flow around



complicated geometry such as ramjets, scramjets, internal flow in a space shuttle main engine or
flow past conic shape objects with relative ease. The main feature of this program is its user-
friendliness, in that the user will be able to access all input and output files in one unified
environment. The Mix-Explicit Implicit algorithm in FEM will be utilized in the solution
algorithm. The program will address the solution of in-viscid Navier Stokes equations and then
this algorithm will be extended to cover the viscous cases. The methodology will also be
extended to cover the viscous cases and the solution will be validated. The programs will be
integrated into one unified environment using the object oriented programming languages such
as Visual Basic, C++, Java, etc.

FORMULATIONS

The critical issues for the MEI code development are numerical scheme stability, discontinuity
capturing and accuracy. The computer program will be developed based on the existing MEI
numerical algorithm. The end product of this project will be a user-friendly environment for the
solution of two-dimensional CFD problems using Finite Element Techniques. This code may be
applied to investigate the high speed (supersonic to low hypersonic flow) fluid flow around or
inside complicated geometry. In the following paragraph a brief description of the governing
equations as well as the methodology used for the solution of these equations is described.

The Navier-Stokes system of equations characterizing the compressible viscous flows written in the
conservation form is given by:
oU N OF; N 0G;
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where U is the vector of unknowns (dependent variables), F is the convection flux vector, G is the

diffusion flux vector and B is body force vector. Each of the variables in equation (1) are
defined below:
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Here p represents the density, u and v denote the x and y components of the velocity and p
represents the pressure. The components of the stress tensor 1 ;; are given by:
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The heat fluxes along the coordinate directions are defined as:
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and the total enthalpy, H, is given by:
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The next step in this process is to solve this system of equations. Although numerous algorithms
have evolved for the solution of this system of equations, the methodology used here is the MEI
algorithm using FEM.

The conservative form of governing equations (1) for compressible viscous flows is re written as:
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where U , F, G and B are the conservation variables, convection flux, diffusion flux, and source

terms, respectively. For laminar flows in Cartesian coordinate system, and in the absence of body

forces, the source term vector B is set to zero. Since U=U(x,t), F=F(U) and G=G(U, U,;) we may

write the following relations for F and G:
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Where a;, b; and c; are the jacobians associated with the convection flux, diffusion flux and
diffusion flux gradients, respectively.
U™ is expanded in Taylor series about U™ as follows:
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where s; and s; are the implicitness parameters associated with the first and second order derivatives
with respect to time, respectively, with 0 <s; <1and 0 <s; <1 and
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Substituting equation (8) into equation (7) yields
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The second derivative of U with respect to time may now be written in terms of the Jacobeans
defined by equation (6) as:
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Substituting equations (5) and (10) into equation (8) and the resulting equations into equation (7) we
arrive at U™ in the form,
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In order to provide different amount of damping to the diffusion terms, two new implicitness
parameters , s3 and s4, are defined in the following manner:
510G = 5;AG (12)
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where s; and s4 are associated with the first order and second order dissipative implicitness
parameters, respectively. Substituting equation (12) into equation (11) and neglecting the third order
spatial derivatives of the conservative variables associated with cy we arrive at the following
relationship for the residual, R:
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All the Jacobeans, a;, b; and ¢;; in equation (13) are assumed constant in space within each time step.
Equation (13) is the basis for the galerkin finite element formulation. The galerkin finite element
formulation of the above relation is obtained by taking the inner product of the residual R and the
test function @, and integrating over the domain, Q:
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The compact form of this formulation is given by the following relationship:
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here o, B are the indices associated with the global node and r,s are the indices associated with the
individual equations. Each of the matrices Ayp ,Baprs, Nor ™1 N, and Hy," are defined as follows:
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Here the source terms associated with B are neglected. In this formulation @ indicates the
interpolating functions associated with the flux terms inside the domain and the '*' denotes the
interpolating function associated with the terms in the boundary.

ACOUSTIC MODELING

The wave equation that describes sound propagating in free air is governed by:
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which can be linearized at the outside surface by the Kirchchoff formulation:

which reduces to a simple wave equation in the special case of stationary sources (u#, =0). A

solution to the pressure field can be expressed by the surface integrals as (Morino and Tseng
1990, Lyrintzis & Mankbadi 1996)
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In the above equations, M is the freestream Mach number, ¢ the speed of sound in the
freestream, the prime a point on the Kirchhoff surface, 7 is the retarded time 7 =¢—1¢', n, the
outward normal to the Kirchhoff surface S,. Thus the pressure at any instant in the region

outside the Kirchhoff surface can be expressed in terms of the information prescribed on the
Kirchhoff surface. The required data on pressure, and its normal and temporal derivatives on the
Kirchhoff surface are taken from the CFD solution.

USER-FRIENDLY ENVIRONMENT

The next task is to develop a user friendly environment so that input data, may be generated,
program may run on a PC based computer and the graphical results may be viewed, and analyzed
immediately. This aspect of the research is viewed an important aspect, because the computational
costs associated with the calculations is drastically reduced as compared with the solutions obtained
on the suppercomputers.

BENCHMARK CASES

The success of the development has been demonstrated through several applications. Figure 1
shows the computational grid for laminar shock wave boundary layer shock interaction. As the
computation progresses, a shock wave is formed and its interaction with the boundary layer can
be detected, as shown in Figure 2. In another application, the grid is also clustered near the
boundary surface, as for the ramjet case (Figure 3). Upon solution convergence, the density and
pressure contours can be plotted in Figures 4 and 5, respectively. The area of interest can be
zoomed in, as shown in Figure 6, to focus on the position where shock waves interact with the
boundary layer. Here, the recirculation zone is clearly visible. Figures 7 and 8 show the grid and
solution contours inside a rocket nozzle. Figure 9 is the computational grid generated around a
scramjet nozzle. Throughout these examples, the user can generate the grid, specify the flow
condition, solve the flow field, and visualize the solution — all in one environment. The process
can be repeated until a satisfatory solution has been achieved.
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Figure 3. Grid for the ramjet Figure 4. Pressure contours for the ramjet
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Figure 7. Mesh for a nozzle Figure 8. Pressure contours for flow inside
a nozzle



FloWiz work environment

File Edit AboutFloWiz Help

— Finite Element Mesh— =

- [C]

FileMName [scq "'&ﬁm‘ T
‘E'dhnﬁﬁ,‘» "’,‘““mmnu
Melam 4160 ':d"ﬂm'inm:::f T
r}ﬁm‘mu g.:;;:_j::
NpDintS 7716 LA
bEarmum (=gt
bdinirmurm —
Zoor
pmnmmr.q H:"‘:::‘j:‘::’:? T
Ll i
%-Origin i '.';":““’", ipnaninats:
i .ws';':':*:'i:-‘:::::m.{.{.
=Cinigin o
Cuit
-4 I
—FloWiz Preprocessor— 1 Flowiz Main routine———  — FloWiz Postprocessor———
Prep I EloWiz |
—IME"W __ILoad —Solver options ———— —Plotting Options
—Flowifield Parameter o Grid
Fevnd Ma, 1. 0c7 el Yeciors |0.25
CFL Ma Ig g k © Density 10
Lapidus In [ | Bestart © Pressure [10
Adapt Par ig 75 Frogress £ Btedrr Ling|10 -
I lter lzgu Time (fmin) |nu; on ‘ [T Rezet Coordinates

Figure 9. Geometry of scramjet.




CONCLUSIONS

A unifired FEM has been developed for solving compressible fluid dynamics problems. The
development is aimed to allow the achivement of quick and accurate solution using MEI scheme.
In addition, the goal of this unified development is to integrate pre-processing, flow solver, and
post-processing into one environment, thus alleviate many ‘“overheads” in solving CFD
problems.

At the time of this publication, the code has been successfully modified to include a solution-
adaptive procedure in an effort to improve the solution efficiency. Other ongoing developments
include but are not limited to acoustic modeling, turbulence modeling, and 3-D extension.
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